Sunday, October 4, 2015

Gajar Nouka (গাঁজার নৌকা)

গাঁজার নৌকা পাহাড়তলি যায়, ও মিরাবাই
গাঁজার নৌকা পাহাড়তলি যায়…
গাঁজা খাব আঁটি আঁটি, মদ খাব বাটি বাটি;
ফেন্সি খেলে, ফেন্সি খেলে, ফেন্সি খেলে টাস্কি খেয়ে যাই! ও মিরাবাই!








আফিম খেলে মাথা ধরে, কোকেনে বুক ধরফর করে;
হিরু খেলে, হিরু খেলে, হিরু খেলে টাস্কি খেয়ে যাই! ও মিরাবাই!
খাবোনা আর গাঁজা আমি, যদি পাশে থাক তুমি;
তোমায় পেলে, তোমায় পেলে, তোমায় পেলে নেশা ভুলে যাই, ও মিরাবাই
জানি আসবেনা তুমি, আঁধারে এই কানাকানি,
জানি আসবেনা তুমি, বাতাসে এই কথা শুনি
তোমায় ভুলে, তোমায় ভুলে, তোমায় ভুলে গাঁজার নৌকাই বাই, ও মিরাবাই !!!
please you must be like this.......
and read more bangle song visit Wikipedia...

32 comments:

  1. This comment has been removed by the author.

    ReplyDelete
  2. This comment has been removed by the author.

    ReplyDelete
  3. This comment has been removed by the author.

    ReplyDelete
  4. bhai apnar ekta kaj chilo....

    ReplyDelete
  5. This comment has been removed by the author.

    ReplyDelete
  6. This comment has been removed by the author.

    ReplyDelete
  7. This comment has been removed by the author.

    ReplyDelete
  8. This comment has been removed by the author.

    ReplyDelete
  9. This comment has been removed by the author.

    ReplyDelete
  10. pd_frame=pd.DataFrame(panda_file)
    print(pd_frame.iloc[:,1])
    print(panda_file[panda_file.domestic==1])
    print(panda_file[['animal_name','class_type']])
    print(panda_file['animal_name'])
    examinee = {'names': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew',
    'Laura', 'Kevin', 'Jonas'],
    'scores': [12.5, 9, 16.5, 2.3, 9, 20, 14.5, 4.5, 8, 19],
    'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
    'qualified': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
    pd_1=pd.DataFrame.from_dict(examinee)
    q={'yes':1,'no':0}
    pd_1['qualified']=pd_1['qualified'].map(q)
    print(pd_1)


    ReplyDelete
  11. animal_name hair feathers eggs milk airborne aquatic predator toothed backbone breathes venomous fins legs tail domestic catsize class_type 1 1 0 0 1 1 0 1 1 0 0 2 1 0 1 2
    pheasant 0 1 1 0 1 0 0 0 1 1 0 0 2 1 0 0 2
    pike 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 4
    piranha 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 4
    pitviper 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 3
    platypus 1 0 1 1 0 1 1 0 1 1 0 0 4 1 0 1 1
    polecat 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0 1 1
    pony 1 0 0 1 0 0 0 1 1 1 0 0 4 1 1 1 1
    porpoise 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1
    puma 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0 1 1
    pussycat 1 0 0 1 0 0 1 1 1 1 0 0 4 1 1 1 1
    raccoon 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0 1 1
    reindeer 1 0 0 1 0 0 0 1 1 1 0 0 4 1 1 1 1
    rhea 0 1 1 0 0 0 1 0 1 1 0 0 2 1 0 1 2
    scorpion 0 0 0 0 0 0 1 0 0 1 1 0 8 1 0 0 7
    seahorse 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 4
    seal 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1
    sealion 1 0 0 1 0 1 1 1 1 1 0 1 2 1 0 1 1
    seasnake 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 3
    seawasp 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 7
    skimmer 0 1 1 0 1 1 1 0 1 1 0 0 2 1 0 0 2
    skua 0 1 1 0 1 1 1 0 1 1 0 0 2 1 0 0 2
    slowworm 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 3
    slug 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 7
    sole 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 4
    sparrow 0 1 1 0 1 0 0 0 1 1 0 0 2 1 0 0 2
    squirrel 1 0 0 1 0 0 0 1 1 1 0 0 2 1 0 0 1
    starfish 0 0 1 0 0 1 1 0 0 0 0 0 5 0 0 0 7
    stingray 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 4
    swan 0 1 1 0 1 1 0 0 1 1 0 0 2 1 0 1 2
    termite 0 0 1 0 0 0 0 0 0 1 0 0 6 0 0 0 6
    toad 0 0 1 0 0 1 0 1 1 1 0 0 4 0 0 0 5
    tortoise 0 0 1 0 0 0 0 0 1 1 0 0 4 1 0 1 3
    tuatara 0 0 1 0 0 0 1 1 1 1 0 0 4 1 0 0 3
    tuna 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 4
    vampire 1 0 0 1 1 0 0 1 1 1 0 0 2 1 0 0 1
    vole 1 0 0 1 0 0 0 1 1 1 0 0 4 1 0 0 1
    vulture 0 1 1 0 1 0 1 0 1 1 0 0 2 1 0 1 2
    wallaby 1 0 0 1 0 0 0 1 1 1 0 0 2 1 0 1 1
    wasp 1 0 1 0 1 0 0 0 0 1 1 0 6 0 0 0 6
    wolf 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0 1 1
    worm 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 7
    wren 0 1 1 0 1 0 0 0 1 1 0 0 2 1 0 0 2

    ReplyDelete
  12. banglesexyvideo.com

    ReplyDelete
    Replies
    1. bhai aro koekta sit prfere koren?

      Delete
  13. Rap Rap Rap all time rap mama

    ReplyDelete
  14. i am rapper bd follow me pls

    ReplyDelete
  15. https://twitter.com/unbrokanSOURAV
    https://www.facebook.com/people/Sd-Sourav/100007517290514

    ReplyDelete
  16. shirajganj rapper boy on gajar nouka cover like me and also follow me thank you!

    ReplyDelete
  17. import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    from sklearn.cross_validation import train_test_split
    from sklearn.datasets import make_regression

    # synthetic dataset for simple regression

    plt.figure()
    plt.title('Sample regression problem with one input variable')
    X_R1, y_R1 = make_regression(n_samples = 100, n_features=1,
    n_informative=1, bias = 150.0,
    noise = 30, random_state=1)
    plt.scatter(X_R1, y_R1, marker= 'o', s=50)
    plt.show()


    X_train, X_test, y_train, y_test = train_test_split(X_R1, y_R1,
    random_state = 0)
    linreg = LinearRegression().fit(X_train, y_train)

    print('Output of Least Squares Logistic Regression')

    #Task 1:

    #print('linear model coeff (w): {}'
    # .format(linreg.coef_))
    #print('linear model intercept (b): {:.3f}'
    # .format(linreg.intercept_))

    print('R-squared score (training): {:.3f}'
    .format(linreg.score(X_train, y_train)))
    print('R-squared score (test): {:.3f}'
    .format(linreg.score(X_test, y_test)))

    #Plot

    plt.figure(figsize=(5,4))
    plt.scatter(X_R1, y_R1, marker= 'o', s=10, alpha=0.8)
    plt.plot(X_R1, linreg.coef_ * X_R1 + linreg.intercept_, 'r-')
    plt.title('Least-squares linear regression')
    plt.xlabel('Feature value (x)')
    plt.ylabel('Target value (y)')
    plt.show()

    ReplyDelete
  18. SHEY MAMA SHEY ,DIL A LAGSA GANTA.

    ReplyDelete
  19. বাড়া চাদ উঠে ছিল গগনে!

    ReplyDelete
  20. 😊😊😊😊😊

    ReplyDelete
  21. অসাধারণ গান, সত্যিকারের অনুভূতি ।

    ReplyDelete